CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALA YSIA

Q1 (a) The durability of concrete involves the environmental condition. The condition exposure includes chemical and physical attacks. In that particular, list three from each exposure.
(b) What is the purpose of determine a minimum concrete cover in reinforced concrete structures?
(c) In order to achieve the required design working life of the structure, list all the durability requirement need to consider to make sure the structural element are protected against the relevant environmental action.
(10 marks)

Q2 A simply supported beam of 5.6 m is to carry a design moment of 300 kNm . The beam is $250 \times 500 \mathrm{~mm}(\mathrm{bxh})$. Assume $\mathrm{f}_{\mathrm{ck}}=25 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{f}_{\mathrm{yk}}=500 \mathrm{~N} / \mathrm{mm}^{2}$. The beam is inside building (XC 1), subjected to 1 hour fire resistance and design life of 50 years. Assume diameter of bar used are 16 mm for compression (if required) and 20 mm for tension. Diameter of the link is 8 mm .
(a) Calculate nominal cover for the beam
(b) Calculate the amount and number of reinforcement needed for the beam
(c) Verify that area of steel determined in (b) is within the limit required by the EC2
(d) Verify the deflection of the beam

FORMULA

$$
\begin{array}{ll}
A_{s^{\prime}}=\frac{\left(K-K_{b a l}\right) f_{c k} b d^{2}}{0.87 f_{y k}\left(d-d^{\prime}\right)} & \text { if } d^{\prime} / x \leq 0.38 \text { or } \\
A_{s}^{\prime}=\frac{\left(K-K_{b a l}\right) f_{c k} b d^{2}}{f_{s c}\left(d-d^{\prime}\right)} & \text { if } d^{\prime} / x>0.38 \\
f_{s c}=700\left(1-\frac{d^{\prime}}{x}\right) &
\end{array}
$$

$$
\frac{l}{d}=K\left(11+1.5 \sqrt{f_{c k}} \frac{\rho_{o}}{\rho}+3.2 \sqrt{f_{c k}}\left(\frac{\rho_{0}}{\rho}-1\right)^{3 / 2} \text { if } \rho<\rho \mathrm{o}\right.
$$

$$
A_{S}=\frac{K_{b a l} f_{c k} b d^{2}}{0.87 f_{y k}\left(d-d^{\prime}\right)}+A_{S}{ }^{\prime}\left(\frac{f_{s c}}{0.87 f_{y k}}\right)
$$

$$
A_{s}=\frac{K_{b a l} f_{c k} b d^{2}}{0.87 f_{y k} z}+A_{s}^{\prime}
$$

$$
A_{s, \min }=0.26\left(\frac{f_{c t m}}{f_{y k}}\right) b d>0.0013 b d
$$

$$
f_{s}=\frac{f_{y k}}{1.15}\left[\frac{G_{k}+0.3 Q_{k}}{1.35 G_{k}+1.5 Q_{k}}\right] \frac{1}{\delta}
$$

$$
\frac{l}{d}=K\left(11+1.5 \sqrt{f_{c k}} \frac{\rho_{o}}{\rho-\rho^{\prime}}+\frac{1}{12} \sqrt{f_{c k}} \sqrt{\frac{\rho^{\prime}}{\rho}}\right) \text { if } \rho>\rho_{o}
$$

$$
\rho_{0}=\sqrt{f_{c k}}
$$

$$
\rho_{0}=\frac{A_{s, r e q}}{b d}
$$

$$
z=d[0.5+\sqrt{(0.25-K / 1.134)}]
$$

$$
\rho^{\prime}=\frac{A_{s^{\prime}, \text { req }}}{b d}
$$

$$
A_{s, \max }=0.04 A_{c}
$$

$$
C_{\min }=\max \left\{C_{\min , b^{*}} ; C_{\min , d u r}+\Delta C_{d u r, \gamma}-\Delta C_{d u r, s t}-\Delta C_{d u r, a d d} ; 10 \mathrm{~mm}\right\}
$$

$$
C_{\text {nom }}=C_{\min }+\Delta C_{d e v}
$$

$z=d\left[0.5+\sqrt{\left(0.25-K_{b a l} / 1.134\right)}\right]$
$C_{m i n}=a_{s d}-\emptyset_{\text {link }}-\frac{\emptyset_{\text {bar }}}{2}$
$x=(d-z) / 0.4$

Table 5.5: Minimum dimensions and axis distances for simply supported beams made with rèinforced and prostressèd cóncrété

Standard fite resistance	Minimum dimensions (mm)						
	Possible combinations of a and $b_{\text {rin }}$ where a is the average axis distance and $b_{\text {min }}$ is the width of beam				Web thickness b_{w}		
					Class WA	Class WB	Class WC
1	2	3	4	5	6	7	8
R 30	$b_{\text {min }}=80$ $\Delta=25$	$\begin{gathered} 120 \\ 20 \end{gathered}$	160 15°	$\begin{aligned} & 200 \\ & 15^{\circ} \end{aligned}$	80	80	80
R 60	$b_{\text {min }}=120$ $a=40$	$\begin{gathered} 160 \\ 35 \end{gathered}$	$\begin{gathered} 200 \\ 30 \end{gathered}$	$\begin{gathered} 300 \\ 25 \end{gathered}$	100	80	100
R 90	$b_{\text {min }}=150$ $\theta=55$	200 45	300 40	$\begin{gathered} 400 \\ 35 \end{gathered}$	110	100	100
R 120	$\begin{aligned} & b_{\text {min }}=200 \\ & a=65 \end{aligned}$	$\begin{gathered} 240 \\ 60 \end{gathered}$	$\begin{gathered} 300 \\ 55 \end{gathered}$	$\begin{gathered} 500 \\ 50 \end{gathered}$	130	120	120
R 180	$\begin{aligned} & b_{\text {min }}=240 \\ & a=80 \end{aligned}$	$\begin{gathered} 300 \\ 70 \end{gathered}$	$\begin{gathered} 400 \\ 65 \end{gathered}$	$\begin{gathered} 600 \\ 60 \end{gathered}$	150	150	140
R 240	$b_{\text {min }}=280$ $a=90$	$\begin{gathered} 350 \\ 80 \end{gathered}$	$\begin{gathered} 500 \\ 75 \end{gathered}$	$\begin{gathered} 700 \\ 70 \end{gathered}$	170	170	160
$a_{s q}=a+10 \mathrm{~mm} \quad$ (see notebelow)							
For prestressed beams the increase of axis distance according to 5.2(5) should be noted. $a_{s 0}$ is the axis distance to the side of beam for the comer bars (or tendon or wre) of beams with only one layer of reinforcement. For values of $\mathrm{b}_{\text {min }}$ greater than that given in Column 4 no increase of a_{99} is required. - Normally the cover required by EN 1992-1-1 will control.							

