

INTRODUCTION TO EUROCODES

Introduction

- The structural Eurocodes are European suite of codes for structural design, developed over twentyfive years (Started since 1975)
- By 2010 they have effectively replaced the current British Standard as the primary basis for designing buildings and civil engineering structures in the UK.
- Claimed to be the most technically advanced structural design codes in the world.

- Have been developed to improve the competitiveness of the European construction industry both within and outside the European Union.
- Eurocode is actually a performance code which has more advantages over British Standard, which is a descriptive code.
- Eurocode should result in more economic structures than BS.

The Euroco	de Family (58 al	l together)
EN 1990	Eurocode	Basis of structural design
EN 1991	Eurocode 1	Actions on structures
EN 1992	Eurocode 2	Design of concrete structures
EN 1993	Eurocode 3	Design of steel structures
EN 1994	Eurocode 4	Design of composite steel and concrete structures
EN 1995	Eurocode 5	Design of timber structures
EN 1996	Eurocode 6	Design of masonry structures
EN 1997	Eurocode 7	Geotechnical design
EN 1998	Eurocode 8	Design of structures for earthquake resistance
EN 1999	Eurocode 9	Design of aluminum alloy structures

With Wisdom We Explore

Format of the Eurocodes

Each Eurocode contains:-

- National Fowarded
- Main text and Annexes
- National Annex
- National annex gives Nationally Determined Parameters (NDPs)
- NDPs have been allowed for reason of safety, economy and durability

Format of the Eurocodes

www.uthm.edu.my

- The family of Eurocodes is based on principles rather than methods
- Format of all codes is: principles, materials, ultimate, service, detailing
- All materials are subjected to the same limit state regime

Eurocodes used subscripts extensively:

"Ed" = design internal effect e.g. N_{ed} = design axial force

"Rd" = design resistance
e.g. N_{Rd} = design resistance of axial force

EN 1990 : EUROCODE Basis of Structural Design

EN 1990

	www.	uthm	.edu.my
--	------	------	---------

			inediaining	oontents	
				Section 1	General
	F (1	3		Section 2	Requirements
Ľ		<u>y</u>	MALAYSIAN MS EN 1990:2010 STANDARD	Section 3	Principles of Limit State Design
				Section 4	Basic Variables
patricing graviorities b			EUROCODE - BASIS OF STRUCTURAL	Section 5	Structural analysis and design assisted by testing
e license oriv, copyrig ar				Section 6	Verification by the partial factor method
02 PM / Snge us				Annex A1	Application for buildings
0.F eb 2012 03 04				Annex A2	Application for bridges
O/N / Downloaded on			ICS: 91.010.30	Annex B	Management of structural reliability for construction works
NVERSTI TUN HUSSEN			Description: everyone, basik, torothoral design FOR SALE WITHIN MALAYSIA OILLY	Annex C	Basis for partial factor design and reliability analysis
Licensed to U			DEPARTMENT OF STANDARDS MALAYSIA	Annex D	Design assisted by testing

Contont

With Wisdom We Explore

EN 1991 : EUROCODE 1 Actions on Structures

EN 1991

www.uthm.edu.my

Ŀ	Ċ	<u>ð</u>	
and have at the			
te former and the second second			

<u>}</u>	MALAYSIAN STANDARD

INS EN 1001-1-1:2010 (NATIONAL ANNEX)

MALAYSIA NATIONAL ANNEX TO EUROCODE 1: ACTIONS ON STRUCTURES -PART 1-1: GENERAL ACTIONS - DEMSITIES, SELF-WEIGHT, IMPOSED LOADS FOR BUILDINGS

EUROCODE 1: A	CTIONS ON STRUCTURES
EN 1991-1-1	Densities, self weight and impose

EN 1991-1-1	Densities, self weight and imposed loads
EN 1991-1-2	Actions on structures exposed to fire
EN 1991-1-3	Snow loads
EN 1991-1-4	Wind loads
EN 1991-1-5	Thermal loads
EN 1991-1-6	Actions during execution
EN 1991-1-7	Accidental actions
EN 1991-2	Traffic loads on bridges
EN 1991-3	Actions induced by cranes and machinery
EN 1991-4	Silos and tanks

CO. 01.010.00

Contrainer national wight, here

@ Copyright 2010

DEPARTMENT OF STANDARDS MALAYSIA

With Wisdom We Explore

www.uthm.edu.my

BRITISH STANDARD	BS EN 1991-1-1:2002
	Incorporating Corrigendum No. 1
Eurocode 1: Actions on	
structures —	
Part 1-1: General actions — Densities, self-weight, imposed loads for buildings	
The European Standard EN 1991-1-1:2002 has the status of a British Standard	
ICH state.00	

EN 1991-1-1

Contents	
Section 1	General
Section 2	Classification of actions
Section 3	Design situations
Section 4	Densities of construction and stored materials
Section 5	Self-weight of construction works
Section 6	Imposed load on buildings
Annex A	Tables for nominal density of construction materials, and nominal density and angle of repose of stored materials
Annex B	Vehicle barriers and parapets for car parks

EN 1992 : EUROCODE 2 Design of Concrete Structures

With Wisdom We Explore

www.uthm.edu.my

¢	<u>6</u>	MALAYSIAN MS EN 1802-1-1:2010 STANDARD
and have a bit from and		EUROCODE 2: DESIGN OF CONCRETE STRUCTURES - PART 1-1: GENERAL RULES AND RULES FOR BUILDINGS
		KZB: 91.406.36, 91.486.45 Section search, name, of spinster, edg, hilby, antere For statement with carry
		Copyright 2010 DEPARTMENT OF STANDARDS MALAYSIA

EN 1992

EUROCODE 2: D STRUCTURES	DESIGN OF CONCRETE
EN 1992-1	General rules and rules for buildings
EN 1992-1-2	General rules –Structural fire design
EN 1992-2	Concrete bridges –design and detailing rules
EN 1992-3	Liquid retaining and containment structures

EN 1992-1

www.uthm.edu.my

BRITISH STANDARD	HS EN 1992-1-1200
Eurocode 2: Design of	
concrete structures —	
Part 1-1: General rules and rules for buildings	
The Kongano Standard IN 1983 (c) 2014 has the status of a	
C Revision particul	
NOT OF YORK WITHOUT SHE FRAM HE GN THE 197 AR FRAM IT THE SING OF MARKET LAW	BS

Contents	
Section 1	General
Section 2	Basis of design
Section 3	Materials
Section 4	Durability and cover to reinforcement
Section 5	Structural analysis
Section 6	Ultimate limit states (ULS)
Section 7	Serviceability limit states (SLS)
Section 8	Detailing of reinforcement & prestressing tendons -General
Section 9	Detailing of members and particular rules
Section 10	Additional rules for precast structures
Section 11	Lightweight aggregated concrete structures
Section 12	Plain and lightly reinforced concrete

With Wisdom We Explore

EN 1992-1

www.uthm.edu.my

Contents	
Annex A	Modification of partial factors for materials
Annex B	Creep and shrinkage strain
Annex C	Reinforcement properties
Annex D	Detailed calculation method for prestressing steel relaxation losses
Annex E	Indicative Strength Classes for durability
Annex F	Reinforcement expressions for in-plane stress conditions
Annex G	Soil structure interaction
Annex H	Global second order effects in structures
Annex I	Analysis of flat slabs and shear walls
Annex J	Examples of regions with discontinuity in geometry or action

EUROCODE vs BS

www.uthm.edu.my

Eurocodes	Title	Superseded standards
EN 1990	Basis of structural design	BS 8110: Part 1- Section 2
EN 1991-1-1	Densities, self weight and imposed loads	BS 6399: Part 1 and BS 648
EN 1991-1-2	Actions on structures exposed to fire	-
EN 1991-1-3	Snow loads	BS 6399: Part 2
EN 1991-1-4	Wind loads	BS 6399: Part 3
EN 1991-1-5	Thermal loads	-
EN 1991-1-6	Actions during execution	-
EN 1991-1-7	Accidental actions	-

With Wisdom We Explore

EUROCODE vs BS

www.uthm.edu.my

Eurocodes	Title	Superseded standards
EN 1991-2	Traffic loads on bridges	BD 37/88
EN 1991-3	Actions induced by cranes and machinery	-
EN 1991-4	Silos and tanks	-
EN 1992-1-1	General rules for buildings	BS 8110: Part 1, 2 and 3
EN 1992-1-2	General rules –Structural fire design	BS 8110: Part 1 Table 3.2
EN 1992-2	Concrete bridges –design and detailing rules	BS 5400: Part 4
EN 1992-3	Liquid retaining and containment structures	BS 8007

www.uthm.edu.my

Eurocodes used different terminology:

Eurocode	British Standard
Action	Force or imposed displacement
Verification	Check
Resistance	Capacity
Execution	Construction
Permanent action	Dead load
Variable action	Live load or imposed load
Isostatic	Primary

With Wisdom We Explore

Key Differences of EC2

- EC2 is generally laid out to give advice on the basis of phenomena / behavior (e.g. bending, shear etc) rather than by member type as in BS 8110 (e.g. beams, slabs, columns etc).
- Design is based on characteristic cylinder strength (f_{ck}) not cube strength (f_{cu}).
- EC2 does not provide derived formulae (e.g. for bending only the details of the stress block are expressed).

www.uthm.edu.my

- Ultimate limit states (ULS)
- 6.1 Bending with or without axial force
- 6.2 Shear
 - 6.2.1 General verification procedure
 - 6.2.2 Members not requiring design shear reinforcement
 - 6.2.3 Members requiring design shear reinforcement
 - 6.2.4 Shear between web and flanges of T-sections
 - 6.2.5 Shear at the interface between concretes cast at different times
- 6.3 Torsion
 - 6.3.1 General
 - 6.3.2 Design procedure
 - 6.3.3 Warping torsion
- 6.4 Punching
 - 6.4.1 General
 - 6.4.2 Load distribution and basic control perimeter
 - 6.4.3 Punching shear calculation
 - 6.4.4 Punching shear resistance of slabs and column bases without shear reinforcement
 - 6.4.5 Punching shear resistance of slabs and column bases with shear reinforcement
 - Design with strut and tie models
 - 6.5.1 General
 - 6.5.2 Struts
 - 6.5.3 Ties
 - 6.5.4 Nodes
- 6.6 Anchorages and laps
- 6.7 Partially loaded areas
- 6.8 Fatigue

6.5

With Wisdom We Explore

Key Differences of EC2

www.uthm.edu.my

Concrete strength classes and modulus of elasticity

Concrete strength class	Characteristic cylinder strength	Characteristic cube strength	Modulus of elasticity E
o do agua o daoo	$f_{\rm ck} ({\rm N/mm^2})$	$f_{\rm ck, cube} ({ m N/mm}^2)$	(kN/mm^2)
C20/25	20	25	30
C25/30	25	30	31
C30/37	30	37	33
C35/45	35	45	34
C40/50	40	50	35
C45/55	45	55	36
C50/55	50	60	37
C55/67	55	67	38
C60/75	60	75	39

Key Differences of EC2

www.uthm.edu.my

Figure 3.5: Rectangular stress distribution

Figure 3.6: Stress-strain relationship for confined concrete

- EC2 uses comma for a decimal point.
- One thousandth is represent by %.
- The partial safety factor for steel reinforcement is 1.15. The characteristic yield strength is 500 Mpa.

- Minimum concrete cover is related to bond strength, durability and fire resistance. There is allowance for deviations due to variations in execution.
- Higher strengths of concrete are covered by EC 2, up to class C90/105.
- The effects of geometric imperfection are considered in addition to lateral loads.

The "variable strut inclination" method is used for the assessment of the shear capacity of a section.

Figure 6.5: Truss model and notation for shear reinforced members

- Serviceability checks can still carried out using "deemed to satisfy" span to effective depth (*I/d*) rules similar to BS 8110.
- The rules for determining the anchorage and lap length are more complex than the simple tables in BS 8110.
- The punching shear checks are carried out at 2d from the face of the column and for a rectangular column, the perimeter is rounded at the corners.