

Exercise 6.1

www.uthm.edu.my

Figure **6.1** below shows a cross section of one-way simply supported slab. The slab thickness is 150 mm and concrete cover is 30 mm. If the dead load of the slab (which includes self-weight, partition and services) is 6.5 kN/m^2 , and live load is 2.0 kN/m^2 ;

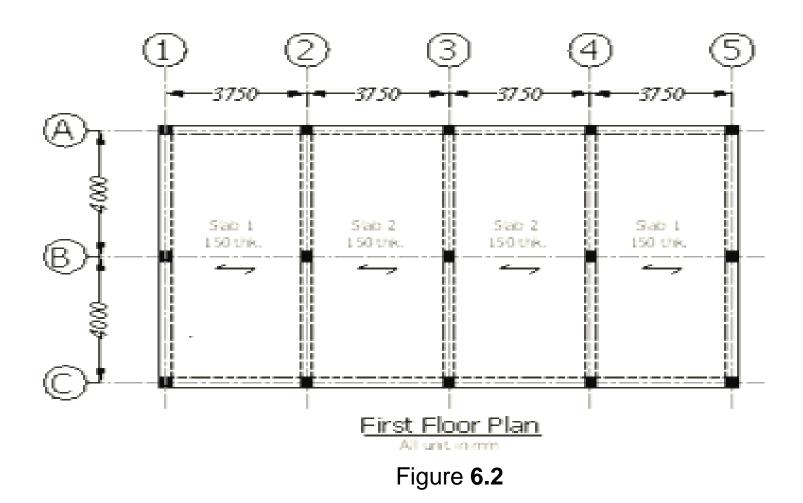
(a) Calculate the moment and shear maximum on slab.

- (b) Design all the reinforcement required for 1m slab width by using $f_{yk} = 500 \text{ N/mm}^2$ and $f_{ck} = 25 \text{ N/mm}^2$.
- (c) Check the shear, deflection and cracking of the slab.

	Figure 6.1
 3 m	

Exercise 6.2

www.uthm.edu.my


Figure **6.2** shows a first floor plan of school building which subjected to a dead load (including selfweight) and imposed load of 4.2 kN/m² and 4.5 kN/m² respectively. The characteristic strength of materials are $f_{ck} = 30 \text{ N/mm}^2$ and $f_{yk} = 500 \text{ N/mm}^2$.

- (a) Using Table 3.12, BS 8110: 1: 1997. Determine the shear forces and bending moments of the whole slab if the slab thickness is 150 mm.
- (b) Design the main reinforcement at support and mid span. Use the maximum moment obtained from (a). Assume Φ main bar = 12 mm.
- (c) Check the deflection and cracking.

www.uthm.edu.my

With Wisdom We Explore

Exercise 6.3

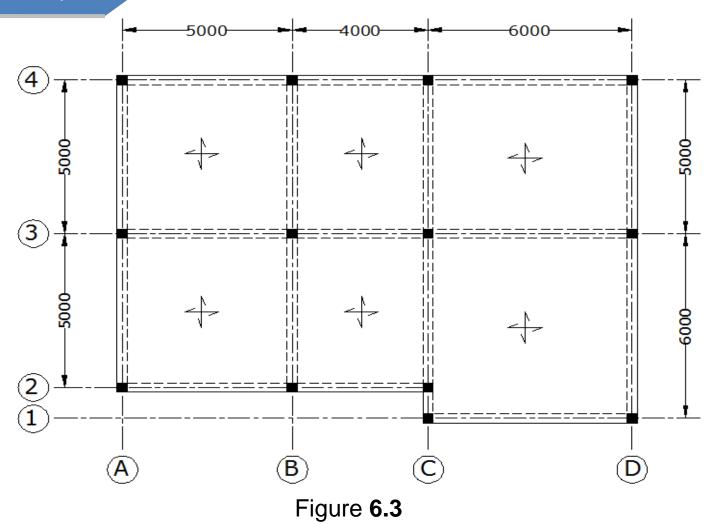
www.uthm.edu.my

Figure **6.3** shows the layout plan of an office building. Given the following data:

Slab thickness	=	175 mm
Finishes (tiles)	=	2.0 kN/m ²
Grade concrete	=	C30/37
Grade steel	=	500
Concrete cover	=	30 mm
Main bar sizes	=	12 mm
Imposed load	=	Refer EN 1991

(a) Calculate the design load on slab.

(b) Design all the reinforcement required for slab C-D/4-3.


(c) Check the deflection and cracking for slab C-D/4-3. Propose the solution if

With Wisdom We Explore

www.uthm.edu.my

With Wisdom We Explore