
www.uthm.edu.my

CONTINUOUS BEAM DESIGN

www.uthm.edu.my

THA

A 450mm deep with 300mm wide rectangular beam is required to support office loads of G_k =30.2kN/m and Q_k =11.5kN/m over 2 of 6m spans. Assume 300mm wide supports, a 50-year design life and a requirement for a 2-hour resistance to fire in an external but sheltered environment. The reinforced concrete beam is designed for moderate humidity or cyclic wet and dry, and secondarily for moderate water saturation with f_{ck} =30MPa, f_{vk} =500MPa.

www.uthm.edu.my

1.0 SPECIFICATION

Effective span, L	= 6m
Characteristic actions:	
Permanent, G _k	= 30.2kN/m
Variable, Q _k	= 11.5kN/m
Design life	= 50 Years
Fire resistance	= R60
Exposure classes	= XC3 + XF1
Materials:	
Characteristic strength of concrete, f _{ck}	= 30N/mm ²
Characteristic strength of steel, fyk	= 500N/mm ²
Characteristic strength of link, fyk	= 500N/mm ²
Unit weight of reinforced concrete	= 25kN/m ³
Assumed:	
Ø _{bar1} (tension)	= 25mm
Ø _{bar2} (compression)	= 12mm
Ø _{link}	= 10mm

www.uthm.edu.my

2.0 DURABILITY, FIRE AND BOND REQUIREMENTS

Min. concrete cover regard to bond, C _{min,b} Min. concrete cover regard to durability, C _{min, dur}	= 25mm = 25mm
Min. required axis distance for R60 fire resistance, a _{sd}	
a _{sd} = a+10	= 25+10
	= 35mm
Min. concrete cover regard to fire	
$C_{min} = a_{sd} - \emptyset_{link} - \emptyset_{bar}/2$	= 35-12-0.5(25)
	= 10.5mm
Allowance in design for deviation, $\Delta Cdev$	= 10 mm
Nominal cover,	
$C_{nom} = C_{min} + \Delta C_{dev}$	=25+10
	=35 mm

∴ C_{nom}=35mm

www.uthm.edu.my

3.0 LOADING AND ANALYSIS

 $\label{eq:Gamma characteristic permanent action, G_k Characteristic variable action, Q_k }$

Design action, W_d

= 30.2kN/m = 11.5kN/m

 $Q_k \leq G_k$ (but the number of spans is less than 3)

Table 3.5 - Design ultimate bending moments and shear forces

	At outer support	Near middle of end span	At first interior support	At middle of interior spans	At interior supports
Moment	0	0.09 <i>Fl</i>	-0.11 <i>Fl</i>	0.07 <i>Fl</i>	-0.08 <i>F1</i>
Shear	0.45F	-	0.6F	-	0.55F
NOTE: 1 is the effective span:					

NOTE: *l* is the effective span;

F is the total design ultimate load $(1.35G_k + 1.5Q_k)$

No redistribution of the moment calculated from this table should be made.

www.uthm.edu.my

Design moments Span:-M_{Ed} = (0.090G+0.100Q)L² or 0.09FL²

= [(0.09×1.35×30.2)+ (0.1×1.5×11.5)]×6² = 187.98kNm

Support:-M_{Ed} = (0.106G+0.10600Q)L² or 0.11FL²

Shear force Outer support:-V_{Ed} = 0.45(G+Q)L

Inner support:-V_{Ed} = 0.63 (G+Q)L = 0.106×58.02×6² = 201.17kNm

= 0.45×58.02×6 = 137.16kN

= 0.63×58.02×6 = 192.02kN

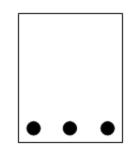
www.uthm.edu.my

4.0 MAIN REINFORCEMENT (FLEXURAL DESIGN)

Effective depth:	
$d = h - C_{nom} - \emptyset_{link} - \emptyset_{bar}/2$	= 450-35-10-(25/2)
	= 392mm
$d' = C_{nom} + \emptyset_{link} + \emptyset_{bar}/2$	= 35+10+(25/2)
	= 57.5mm
<u>Flexure in span</u>	
Design bending moment, M _{Ed}	= 187.98kNm
$K = M/bd^2 f_{ck}$	= 187.98x10 ⁶ /(300x392 ² x30)
	= 0.136
Redistribution = 0%	
Redistribution ratio, δ = 1.0	
$K_{bal} = 0.363(\delta - 0.44) - 0.116(\delta - 0.44)^2$	= 0.363(1-0.44)-0.116(1-0.44) ²
	= 0.167

K < K_{bal} ∴ Compression reinforcement is not required

www.uthm.edu.my


$$z = d[0.5 + \sqrt{0.25 - K/1.134}]$$

z = 0.86d

Area of tension steel $A_{s} = \frac{M_{ed}}{0.87 f_{yk} z}$

= 0.86x392 = 337.12 mm

 $=\frac{187.98\times10^{6}}{0.87\times500\times337.12}$ $=1281.85 \text{mm}^{2}$

∴ Try 3H25 (1473mm²)

www.uthm.edu.my

Check cracking:-Check spacing, Spacing of outer bars

= 300-(2×35)-(2×10)-25 = 185mm

∴ S = 93mm

Steel stress,

$$\sigma_{s} = \frac{f_{yk}}{1.15} \times \left[\frac{G_{k} + 0.3Q_{k}}{1.35G_{k} + 1.5Q_{k}} \right] \frac{1}{\delta} = 237 \text{MPa}$$
Maximum crack width, w_{max} = 0.3mm

$$\therefore \text{ Maximum bar size} = 16 \text{mm or}$$
Maximum spacing = 200mm
S < Maximum spacing
Use 3H25 (1473mm²)

www.uthm.edu.my

Check deflection:-

Percentage of required tension reinforcement,	
$\rho = A_{s,req}/bd$	= 1473/(300×392) = 0.0125
Reference reinforcement ratio,	
$\rho_0 = (f_{ck})^{1/2} \times 10^{-3}$	= (30) ^{1/2} x 10 ⁻³
	= 0.0055
Percentage of required compression reinforcement	
$\rho' = A_{s',req}/bd$	= 0/(300×392)
	= 0

www.uthm.edu.my

Factor for structural system, K = 1.3 $\rho > \rho_0$: use equation (2)

$$\frac{l}{d} = K \left[11 + 1.5\sqrt{f_{ck}} \frac{\rho_0}{\rho - \rho'} + \frac{1}{12}\sqrt{f_{ck}} \sqrt{\frac{\rho'}{\rho_0}} \right]$$

 $A_{s,prov}/A_{s,req}$

= 1473/1281.85 =1.15 < 1.5

= 19

Max.span = (19 x1.15)x 392 = 8565 mm > 6000 mm (OK)

www.uthm.edu.my

<u>Flexural support</u> M_{Ed} = 201.17kNm

 $K = M/bd^{2}f_{ck}$ $K_{bal} = 0.167$

= 0.145

K < K_{bal} ∴ Compression reinforcement is not required

$z = d[0.5 + \sqrt{0.25 - K/1}]$		
z = 0.85d	= 0.85 x 392 = 333mm	Check deflection:-
Area of tension steel		ho = 0.0133, l/d =19.5, A _{s,prov} /A _{s,req} = 1.06
$A_{s} = \frac{M_{Ed}}{0.87 f_{vk} z}$	= 1338mm2	Max. span = (19.5 x1.06)x 392
UNO / Tyk2		= 8107 mm > 6000 mm
∴ Try	y 3H25 (1473mm²)	(ОК)

www.uthm.edu.my

5.0 SHEAR REINFORCEMENT

Support B (critical)

Shear at central support = 192kNAt d from face of support V_{Ed} = 192-(0.300/2+0.392)x50.8 = 164.5kN

Max. shear resistance f_{ck} = 30MPa, cot θ = 2.5 $V_{Rd, max}$ = 388.20kN

Shear reinforcement:- $A_{sw}/s = V_{Ed}/(0.78f_{yk}dcot\theta)$ $V_{Rd, max} > V_{Ed}$ (OK) Use cot θ = 2.5 or θ =22

Use H8-200 or H8-225

= 164.5x10³/(0.78x500x392x2.5) = 0.429

Try link H8, A_{sw} = 101mm² Spacing, s = 101/0.429 = 236mm

www.uthm.edu.my

Max. spacing, S = 0.75d

= 294mm

Minimum links:- $A_{sw}/s = (0.08f_{ck}^{1/2}b_w)/f_{yk}$

= (0.08x30^{1/2}x300<u>)</u>/500 = 0.263 (Not critical)

Use H8-200

<u>Support A (and C)</u> Shear at end support = 137.2kN

At face of support, V_{ed} = 137.2-(0.150+0.392)x50.8 = 109.7kN By inspection, shear reinforcement required and $\cot\theta$ = 2.5 $A_{sw}/s = V_{Ed}/(0.78f_{yk}d\cot\theta)$ = 0.285

Use H8-200 (A_{sw}/s = 0.5) throughout

www.uthm.edu.my

6.0 DETAILING CHECKS

 $\frac{\text{Min. area}}{A_{s,min}} = 0.26(f_{ctm}/f_{yk})b_td \ge 0.0013b_td$

where; b_t = width of tension zone f_{ctm} = 0.30 x $f_{ck}^{0.666}$

<u>Curtailment of main bars</u> Bottom: curtail 75% main bars 0.08L from end support 70% main bars 0.30L-a_l = 0.26x0.30x30^{0.666}x300x392/500 = 177mm²

- = 480mm (say 450mm from A)
- = 0.3x6000-1.125xd
- = 1800-1.125x392
- = 1359 mm (say 1350 from A)

www.uthm.edu.my

Top: curtail 40% main bars 0.15L+a_l

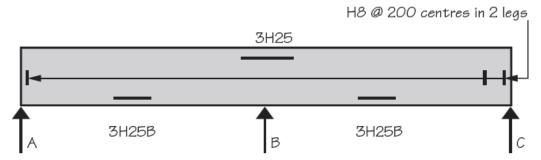
65% main bars 0.30L+a

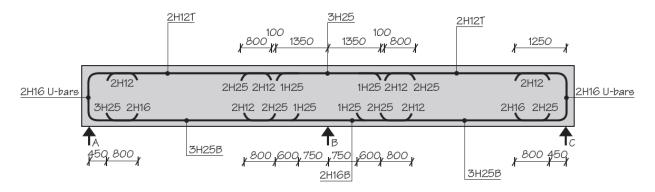
= 900+441 = 1341mm (say 1350 from B) = 1800+441 =2241mm (say 2250 from B)

At supports: 25% of A_s to be anchored at the supports 25% of 1225mm²

= 314mm²

Use min. 2H16 (402mm²) at support A, B and C


Detail lap U-bars tension lap with main steel = 780mm (say 800mm)


www.uthm.edu.my

7.0 REINFORCEMENT DETAILS

Summary of design,

Complete reinforcement details,

