

www.uthm.edu.my

BEAM DESIGN

Introduction

- The purposes of this chapter is to compile the design principles that have been previously discussed in order to form a complete design procedures of reinforced concrete beam.
- Basically, beam is the structural element which subjected to transverse load in the forms bending moment, shear force and torsion. Therefore beam is designed to resist all that particular factors.
- Beside of that, beams are also designed to fulfill the serviceability requirements in order to produce an adequate and safe design.

Introduction

- The complete beam design procedures can be state as follows;
 - Determine design life
 - Determine preliminary beam sizing
 - Estimate actions on beam
 - Asses durability requirement and determine concrete strength
 - Determine nominal cover for durability, fire and bond requirement
 - □ Analysis structure to obtain critical moments and shear forces
 - Design of flexural reinforcement
 - Design of shear reinforcement
 - Verify deflection
 - Verify cracking
 - Detailing

Beam Sizing

- From structural point of view, the selection of beam sizes is often dictated by deflection control criteria.
- Span to overall depth (L/h) ratios of 13 to 18 are generally found to be economical in the case of simply supported and continuous beam.
- The recommended ratio of width to overall depth (b/h) in rectangular beam section is in range of 0.3 0.6.
- Beside of that, the beam sizes also control by an architectural detailing and fire resistance requirement.

Beam Sizing

www.uthm.edu.my

EC 2 Part 1-2, gives a method for determining the minimum dimension of beams for fire resistance requirements.

(a) Constant width

(b) Variable width

(c) I - section

Beam Sizing

www.uthm.edu.my

Minimum dimensions for beam for fire resistance

Standard fire resistance		Minimum dimensions (mm) Possible combinations of <i>a</i> and <i>b</i> _{min} where <i>a</i> is the average axis distance and <i>b</i> _{min} is the width of the beam									
		A	В	C	D	E	F	G	Н		
		R60	b _{min} = a =	120 40	160 35	200 30	300 25	120 25	200 12 ^a		
R90	b _{min} = a =	150 55	200 45	300 40	400 35	150 35	250 25				
R120	b _{min} = a =	200 65	240 60	300 55	500 50	200 45	300 35	450 35	500 30		
R240	b _{min} = a =	280 90	350 80	500 75	700 70	280 75	500 60	650 60	700 50		

- For fire resistance R120-R240, the width of the beam at the first intermediate support should be at least that in column F, if both the following conditions exist:
 - i) there is no fixity at the end support, and
 - ii) the acting shear at normal temperature $V_{sd} > 0.67 V_{Rd,max}$

www.uthm.edu.my

Fig.3.5, Cl.7.3.3(2), Cl.7.3.1, Table7.2N

 Design of RC beam for flexure are based on the following steps:

Design procedures of rectangular beam:-

1. Calculate
$$K = \frac{M}{bd^2 f_{dk}}$$

2. Calculate $K_{bal} = 0.363(\delta - 0.44) - 0.116(\delta - 0.44)^2$
where $\delta = \frac{\text{momen at sectionafter redistribution}}{\text{momen at sectionbefore redistribution}} \le 1.0$

www.uthm.edu.my

THM

If $K \leq K_{bal}$, compression reinforcement is not required, and

i.
$$z = d \left[0.5 + \sqrt{(0.25 - K/1.134)} \right]$$

ii. $A_s = \frac{M}{0.87 f_{yk} z}$

If $K > K_{bal}$, compression reinforcement is required, and

i.
$$z = d \left[0.5 + \sqrt{(0.25 - K_{bal}/1.134)} \right]$$

ii. $x = (d-z)/0.4$
iii. Check d'/x

or

www.uthm.edu.my

$$A_{s}' = \frac{(K - K_{bal})f_{ck}bd^{2}}{0.87f_{y_{k}}(d - d')}$$
 if $d'/x \le 0.38$

$$A_{s}' = \frac{(K - K_{bal})f_{ck}bd^{2}}{f_{sc}(d - d')}$$
 if $d'/x > 0.38$

where $f_{sc} = 700(1 - d'/x)$

$$A_{\rm s} = \frac{K_{bal} f_{ck} b d^2}{0.87 f_{y_k} z} + A_{\rm s}' \left(\frac{f_{\rm sc}}{0.87 f_{\rm yk}} \right)$$

Check A_{smin} and $A_{smax} \rightarrow Cl.9.2.1.1$

www.uthm.edu.my

Design Procedures for Flange Section:-

1. Calculate $M_{\rm f} = 0.567 f_{\rm ck} b h_{\rm f} (d - 0.5 h_{\rm f})$

2. If
$$M \le M_{\rm f}$$
, neutral axis in the flange
i. $K = \frac{M}{bd^2 f_{\rm ck}}$
ii. $z = d \left[0.5 + \sqrt{(0.25 - K/1.134)} \right]$
iii. $A_{\rm s} = \frac{M}{0.87 f_{\rm yk} z}$

www.uthm.edu.my

If $M > M_f$, neutral axis in the flange

- i. Calculate $\beta_{\rm f} = 0.167 \frac{b_{\rm w}}{b} + 0.567 \frac{h_{\rm f}}{d} \left(1 \frac{b_{\rm w}}{b}\right) \left(1 \frac{h_{\rm f}}{2d}\right)$
- ii. Calculate $M_{\text{bal}} = \beta_{\text{f}} f_{\text{ck}} b d^2$
- iii. Compare M and Mbal

If $M \leq M_{bal}$, compression reinforcement is not required.

i. $A_{\rm s} = \frac{M + 0.1 f_{\rm ck} b_{\rm w} d(0.36d - h_{\rm f})}{0.87 f_{\rm yk} (d - 0.5h_{\rm f})}$

UTHM internet internet

Design for flexure

www.uthm.edu.my

If $M > M_{bal}$, compression reinforcement is required.

i.
$$A_{s}' = \frac{(M - M_{bal})}{0.87f_{yk}(d - d')}$$

ii. $A_{s} = \frac{0.167f_{dk}b_{w}d + 0.567f_{dk}h_{f}(b - b_{w})}{0.87f_{yk}} + A_{s}'$

www.uthm.edu.my

Area of reinforcement bars

Table 1: Cross Sectional Area (mm ²) according to Size and Numbers of Bar										
Bar Size	Number of bar								Perimeter (mm)	
(mm)		()								
(11111)	1	2	3	4	5	6	7	8		
6	28.3	56.6	84.9	113	141	170	198	226	18.9	
8	50.3	101	151	201	251	302	352	402	25.1	
10	78.6	157	236	314	393	471	550	629	31.4	
12	113	226	339	453	566	679	792	905	37.7	
16	201	402	603	805	1006	1207	1408	1609	50.3	
20	314	629	943	1257	1571	1886	2200	2514	62.9	
25	491	982	1473	1964	2455	2946	3438	3929	78.6	
32	805	1609	2414	3218	4023	4827	5632	6437	100.6	
40	1257	2514	3771	5029	6286	7543	8800	10057	125.7	

UTHM Sheese Internet Hussein Ore Hussein

Design for shear

www.uthm.edu.my

Cl.6.2.1(8), Cl.6.3(1&3), Cl.6.3.(3), Cl.6.2.3(3), Cl.9.2.2(5&6)

- Where BM is greatest: Cracks are caused by Bending Stress in the tension zone
- Where SF is greatest: Cracks are caused by Diagonal Tension / Diagonal Compression due to complementary shears

www.uthm.edu.my

EC 2 introduces the strut inclination method for shear capacity checks. In this method the shear is resisted by concrete struts acting in compression and shear reinforcement acting in tension.

www.uthm.edu.my

IOHOR

NTHM

Chiversiti Turn Hussein O

Assumed truss model for the strut inclination method

www.uthm.edu.my

The diagonal compressive strut

$$V_{\text{Rd' max}} = f_{\text{cd}} \mathbf{x} (b_{\text{w}} \mathbf{x} \ z \cos \theta) \mathbf{x} \sin \theta$$
$$= f_{\text{cd}} b_{\text{w}} z \cos \theta \sin \theta$$

• In EC2 this equation is modified by the inclusion of a strength reduction factor for concrete cracked in shear v_1 and the introduction of coefficient taking account of the state of the stress in compression chord α_{cw} thus,

$$V_{\text{Rd' max}} = \alpha_{\text{cw}} v_1 f_{\text{cd}} b_{\text{w}} z / (\cot \theta + \tan \theta)$$

= $\alpha_{\text{cw}} v_1 (f_{\text{ck}} / 1.5) b_{\text{w}} 0.9 \text{d} / (\cot \theta + \tan \theta)$
= $\alpha_{\text{cw}} v_1 0.6 f_{\text{ck}} b_{\text{w}} \text{d} / (\cot \theta + \tan \theta)$

UTHM GIVEN WITHM Hussein of the lot of th

Design for shear

www.uthm.edu.my

• It is set by the EC2 to limit the θ value between 22 to 45 degrees. The recommended value for α_{cw} and v_1 are given in Clause 6.2.3 EC2. For the purpose of this module the following values are used, $\alpha_{cw} = 1.0$, $v_1 = 0.6$ $(1 - f_{ck}/250)$ hence,

$$V_{\text{Rd,max}} = \frac{0.36f_{\text{ck}}b_{\text{w}}d(1-f_{\text{ck}}/250)}{(\cot\theta + \tan\theta)}$$

The shear resistance of the link is given by;

$$V_{\text{Rd,s}} = f_{\text{ywd}}A_{\text{sw}}$$
$$= (f_{\text{yk}} / 1.15) A_{\text{sw}}$$
$$= 0.87 f_{\text{yk}}A_{\text{sw}}$$

www.uthm.edu.my

 If the links are spaced at a distance s apart, then the shear resistance of the link is increased proportionately and is given by;

$$V_{\rm Rd,s} = 0.87 f_{\rm yk} A_{\rm sw} \left(z \cot \theta / s \right)$$

$$= 0.87 f_{yk} A_{sw} (0.9d \cot \theta / s)$$

$$= 0.78 f_{yk} A_{sw} d \left(\cot \theta / s \right)$$

 All shear force will be resisted by the provision of links with no direct contribution from shear capacity of concrete itself.

$$V_{\text{Ed}} = V_{\text{Rd,s}}$$

= 0.78 f_{yk} A_{sw}d (cot θ / s)

www.uthm.edu.my

Thus rearranging

$$\frac{A_{\rm sw}}{s} = \frac{V_{\rm Ed}}{0.78f_{\rm yk}d\cot\theta}$$

EC2 (Cl. 9.2.2) specifies a minimum value for A_{sw}/s such that,

$$\frac{A_{\rm sw}}{s} = \frac{0.08b_{\rm w}\sqrt{f_{\rm ck}}}{f_{\rm yk}}$$

 EC2 (Cl. 9.2.2) also specifies that the maximum spacing of vertical link should not exceed 0.75*d*.

www.uthm.edu.my

Design procedures;

- Determine design shear force V_{ed}
- Determine the concrete strut capacity for $\cot \theta = 1.0$ and $\cot \theta = 2.5$ ($\theta = 22^{\circ}$ and $\theta = 45^{\circ}$ respectively)

$$V_{\text{Rdmax}} = \frac{0.36b_w df_{ck}}{(\cot\theta + \tan\theta)}$$

- If $V_{Ed} > V_{Rd,max}$ cot $\theta = 1.0$ Redesign section
- If $V_{Ed} < V_{Rd,max}$ cot θ = 2.5, use cot θ = 2.5, and calculate the shear reinforcement as follows

$$\frac{A_{\rm sw}}{s} = \frac{V_{\rm Ed}}{0.78f_{\rm yk}d\cot\theta} \qquad (\cot\theta = 2.5)$$

www.uthm.edu.my

If
$$V_{Rd,max} \cot \theta = 2.5 < V_{Ed} < V_{Rd,max} \cot \theta = 1.0$$

• Calculate
$$\theta = 0.5 \sin^{-1} \left[\frac{V_{Ed}}{0.18b_w df_{dk} (1 - f_{dk} / 250)} \right]$$

Calculate shear link as

$$\frac{A_{\rm sw}}{s} = \frac{V_{\rm Ed}}{0.78f_{\rm yk}d\cot\theta}$$

Calculate the minimum links required by EC2: Cl 9.2.2(5),

$$\frac{A_{\rm sw}}{s} = \frac{0.08b_{\rm w}\sqrt{f_{\rm ck}}}{f_{\rm yk}}$$

www.uthm.edu.my

 Calculate the additional longitudinal tensile force caused by the shear

$$\Delta F_{td} = 0.5 V_{Ed} \cot \theta$$

Determine additional tension reinforcement,

$$A_{s} = \Delta f_{td} / 0.87 f_{yk}$$

Deflection

www.uthm.edu.my

Tables 7.4N

To control deflection to a maximum of span/250:

- i. Calculate $\rho_o = \sqrt{f_{ck}} 10^{-3}$
- ii. Calculate $\rho = A_{s,req} / bd$
- *iii.* Calculate $\rho' = A_{s',req} / bd$
- iv. Determine K and calculate I/d

$$\frac{l}{d} = K \left[11 + 1.5\sqrt{f_{ck}} \frac{\rho_o}{\rho} + 3.2\sqrt{f_{ck}} \left(\frac{\rho_o}{\rho} - 1\right)^{3/2} \right] \quad \text{if } \rho \le \rho_o$$
$$\frac{l}{d} = K \left[11 + 1.5\sqrt{f_{ck}} \frac{\rho_o}{\rho - \rho'} + \frac{1}{12}\sqrt{f_{ck}} \sqrt{\frac{\rho'}{\rho}} \right] \quad \text{if } \rho > \rho_o.$$

Deflection

www.uthm.edu.my

Calculate Modification factors:

- i. Modification factor for span greater than 7m = 7/L
- ii. Modification factor for steel area provided= $A_{s,prov}/A_{s,req}$

$$A_{s,prov}/A_{s,req} < 1.5$$

(l/d)allow= l/d x Modification factor (n_i) (l/d)actual= l_{eff}/d_{eff}

(I/d)allow > (I/d)actual

Cracking

www.uthm.edu.my

Cl.7.3, Tables 7.2N,7.3N

i. Calculate steel stress for limiting crack width, w_{max}=0.3mm

$$f_{s} = \frac{f_{yk}}{1.15} \left[\frac{G_{k} + 0.3Q_{k}}{1.35G_{k} + 1.5Q_{k}} \right] \frac{1}{\delta}$$

Or $f_s = 435 \times (G_k + 0.3 \times Q_k / 1.35 \times G_k + 1.5 \times Q_k) \times (A_{s req} / A_{s prov})$

ii. Calculate bar spacing

Detailing

- i. Check curtailment , Cl.9.3.1.1(4), 9.2.1.3, Fig.9.2
- ii. Check anchorage, Cl.9.3.1.2, 8.4.4, 9.3.1.19(4), 9.2.1.5(1), 9.2.1.5(2)
- iii. Check laps, Cl.8.7.3